Problem Set 6 solution manual

Exercise. A6.1

We will describe $\phi: \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \longrightarrow \mathbb{Z}_{2} \times \mathbb{Z}_{2}$, as a matrix $M=\left[\begin{array}{ll}a & d \\ b & e \\ c & f\end{array}\right]$. Then $\phi(x, y, z)=$ $(x, y, z) \cdot\left[\begin{array}{ll}a & d \\ b & e \\ c & f\end{array}\right] \cdot($ all calculations being $\bmod 2)$

Example 1: $H=<(1,0,0)>=\{(0,0,0),(1,0,0)\}=\{(x, y, z) \mid y=z=0\}$
We can take $\phi(x, y, z)=(y, z)=(x, y, z)\left[\begin{array}{ll}0 & 0 \\ 1 & 0 \\ 0 & 1\end{array}\right]$. So $M_{H}=\left[\begin{array}{ll}0 & 0 \\ 1 & 0 \\ 0 & 1\end{array}\right]$.
Example 2: $H=<(1,0,1)>=\{(0,0,0),(1,0,1)\}=\{(x, y, z) \mid y=0(\bmod 2) x=z\}=$ $\{(x, y, z) \mid y=0(\bmod 2) x+z=0\}$
We can take $\phi(x, y, z)=(y, x+z)=(x, y, z)\left[\begin{array}{ll}0 & 1 \\ 1 & 0 \\ 0 & 1\end{array}\right]$. So $M_{H}=\left[\begin{array}{ll}0 & 1 \\ 1 & 0 \\ 0 & 1\end{array}\right]$.
Example 3: $H=\{(0,0,0),(0,0,1),(1,1,0),(1,1,1)\}=\{(x, y, z) \mid y=x\}=\{(x, y, z) \mid x+y=$ 0\}
We can take $\phi(x, y, z)=(x+y, 0)=(x, y, z)\left[\begin{array}{ll}1 & 0 \\ 1 & 0 \\ 0 & 0\end{array}\right]$. So $M_{H}=\left[\begin{array}{ll}1 & 0 \\ 1 & 0 \\ 0 & 0\end{array}\right]$.

H	The matrix M_{H}
$\langle(1,0,0)\rangle$	$\left[\begin{array}{ll}0 & 0 \\ 1 & 1 \\ 1 & 0\end{array}\right]$
$\langle(1,1,0)\rangle$	$\left[\begin{array}{ll}1 & 0 \\ 1 & 0 \\ 0 & 1\end{array}\right]$
$\langle(1,1,1)\rangle$	$\left[\begin{array}{ll}1 & 0 \\ 1 & 1 \\ 0 & 1\end{array}\right]$
$\langle(1,0,1)\rangle$	$\left[\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 1 & 0\end{array}\right]$
$<(0,1,0)\rangle$	$\left[\begin{array}{ll}1 & 0 \\ 0 & 0 \\ 1 & 1\end{array}\right]$
$<(0,1,1)\rangle$	$\left[\begin{array}{ll}0 & 1 \\ 1 & 0 \\ 1 & 0\end{array}\right]$
$\langle(0,0,1)\rangle$	$\left[\begin{array}{ll}1 & 0 \\ 1 & 1 \\ 0 & 0\end{array}\right]$
$\{(0,0,0),(1,0,0),(1,1,0),(0,1,0)\}$	$\left[\begin{array}{ll}0 & 0 \\ 0 & 0 \\ 1 & 0\end{array}\right]$
$\{(0,0,0),(1,0,0),(1,1,1),(0,1,1)\}$	$\left[\begin{array}{ll}0 & 0 \\ 1 & 0 \\ 1 & 0\end{array}\right]$
$\{(0,0,0),(1,0,0),(1,0,1),(0,0,1)\}$	$\left[\begin{array}{ll}0 & 0 \\ 1 & 0 \\ 0 & 0\end{array}\right]$
$\{(0,0,0),(0,1,0),(1,1,1),(1,0,1)\}$	$\left[\begin{array}{ll}1 & 0 \\ 0 & 0 \\ 1 & 0\end{array}\right]$
$\{(0,0,0),(0,1,0),(0,1,1),(0,0,1)\}$	$\left[\begin{array}{ll}1 & 0 \\ 0 & 0 \\ 0 & 0\end{array}\right]$
$\{(0,0,0),(0,0,1),(1,1,0),(1,1,1)\}$	$\left[\begin{array}{ll}1 & 0 \\ 1 & 0 \\ 0 & 0\end{array}\right]$
$\{(0,0,0),(1,1,0),(0,1,1),(1,0,1)\}$	$\left[\begin{array}{ll}1 & 0 \\ 1 & 0 \\ 1 & 0\end{array}\right]$

Section. 11

Exercise. 10

Notice that in $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$, every elements is of order 2 .
The subgroups of $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ are:
$<(1,0,0)>=\{(0,0,0),(1,0,0)\}$.
$<(1,1,0)>=\{(0,0,0),(1,1,0)\}$.
$<(1,1,1)>=\{(0,0,0),(1,1,1)\}$.
$<(1,0,1)>=\{(0,0,0),(1,0,1)\}$.
$<(0,1,0)>=\{(0,0,0),(0,1,0)\}$.
$<(0,1,1)>=\{(0,0,0),(0,1,1)\}$.
$<(0,0,1)>=\{(0,0,0),(0,0,1)\}$.

Also we have the subgroups of order 4 :
$<(1,0,0),(0,1,0)>=<(1,0,0),(1,1,0)>=<(0,1,0),((1,1,0)>=\{(0,0,0),(1,0,0),(1,1,0),(0,1,0)\}$. $\{(0,0,0),(1,0,0),(1,1,1),(0,1,1)\}$. $\{(0,0,0),(1,0,0),(1,0,1),(0,0,1)\}$. $\{(0,0,0),(0,1,0),(1,1,1),(1,0,1)\}$. $\{(0,0,0),(0,1,0),(0,1,1),(0,0,1)\}$. $\{(0,0,0),(0,0,1),(1,1,0),(1,1,1)\}$. $\{(0,0,0),(1,1,0),(0,1,1),(1,0,1)\}$.

Exercise. 11

The subgroups of order 4 are:
We have to cyclic subgroups:
$<(0,1)>=\{(0,0),(0,1),(0,2),(0,3)\}$,
$<(1,1)>=\{(0,0),(1,1),(1,2),(0,3)\}$.
And also we have the following subgroup: $\{(0,0),(1,0),(0,2),(1,2)\}$, which is isomorphic to the klein group.

Exercise. 16

We know that: $\mathbb{Z}_{12} \cong \mathbb{Z}_{3} \times \mathbb{Z}_{4}$
Also : $\mathbb{Z}_{6} \cong \mathbb{Z}_{3} \times \mathbb{Z}_{2}$
Then: $\mathbb{Z}_{2} \times \mathbb{Z}_{12} \cong \mathbb{Z}_{2} \times \mathbb{Z}_{3} \times \mathbb{Z}_{4}$.
And: $\mathbb{Z}_{4} \times \mathbb{Z}_{6} \cong \mathbb{Z}_{4} \times \mathbb{Z}_{3} \times \mathbb{Z}_{2}$
Then : $\mathbb{Z}_{4} \times \mathbb{Z}_{6} \cong \mathbb{Z}_{2} \times \mathbb{Z}_{12}$.
Exercise. 17

The maximum order of an element is the order of $(1,1,1)$ (check!), which is of order the $\operatorname{lcm}(8,10,24)=120$.

Exercise. 18

They are not isomorphic since, let $G_{1}=\mathbb{Z}_{8} \times \mathbb{Z}_{10} \times \mathbb{Z}_{24}$
$G_{2}=\mathbb{Z}_{4} \times \mathbb{Z}_{12} \times \mathbb{Z}_{40}$.
Notice that :
In \mathbb{Z}_{8} we have 4 elements whose order is a divisor of $4(0,2,4$, and 6$)$.
In \mathbb{Z}_{10} we have 2 elements whose order is a divisor of $4(0$, and 5$)$.
In \mathbb{Z}_{24} we have 4 elements whose order is a divisor of $4(0,6,12$, and 18).

So in $\mathbb{Z}_{8} \times \mathbb{Z}_{10} \times \mathbb{Z}_{24}$ we have 32 elements whose order is a divisor of 4 .

In \mathbb{Z}_{4} we have 4 elements whose order is a divisor of $4(0,1,2$, and 3$)$.
In \mathbb{Z}_{12} we have 4 elements whose order is a divisor of $4(0,3,6$ and 9$)$.
In \mathbb{Z}_{40} we have 4 elements whose order is a divisor of $4(0,10,20$, and 30$)$.

So in $\mathbb{Z}_{4} \times \mathbb{Z}_{12} \times \mathbb{Z}_{40}$ we have 64 elements whose order is a divisor of 4 .
Then the two groups G_{1}, and G_{2} can't be isomorphic.

Exercise. 46

Let us prove it by induction:
base step: for $\mathrm{n}=2$:Let $\left(G_{1}, \star\right)$, and $\left(G_{2}, *\right)$ be two abelian groups, and let us prove that $G_{1} \times G_{2}$ is abelian.
let (a, b), and $(c, d) \in G_{1} \times G_{2}$. Since G_{1} and G_{2} are abelian we have $a \star b=b \star a$, and $c * d=d * c$ then we get $(a, b)(c, d)=(a \star b, c * d)=(b \star a, d * c)=(b, d)(a, c)$.
$\Longrightarrow G_{1} \times G_{2}$ is abelian.
Inductive step: Suppose it is true up to n, and let us prove it for $n+1$.
Let $G_{1}, \ldots, G_{n}, G_{n+1}$ be n abelian groups, by the inductive step we have $G_{1} \times G_{2} \times \ldots \times G_{n}$ is abelian, call it G, then we have $G_{1} \times G_{2} \times \ldots \times G_{n} \times G_{n+1}=G \times G_{n+1}$, then by the same reasoning in the base step we get that $G_{1} \times G_{2} \times \ldots \times G_{n+1}$ is abelian.

Exercise. 47

Given G abelian, and H is equal to the set of all elements of order 2 together with the identity. Let us prove H is a subgroup of G.

- $e \in H$ by definition of H.
- let $a, b \in H,($ WLOG we can consider both a, and b are both not $e)$, we have a is of order 2 , and b is of order 2 , and $(a b)^{2}=(a b)(a b) \underset{\text { associative }}{\overline{=}} a(b a) b \underset{\text { abelian }}{\overline{=}} a(a b) b=(a a)(b b)=e$ then $a b$ is also of order 2 , then $a b \in H$.
- Let $a \in H$ then $a^{2}=e \Longrightarrow a . a=e \Longrightarrow a=a^{-1}$, then $a^{-1} \in H$.

And Hence H is a subgroup of G.
Section. 13

Exercise. 1

ϕ is a homomorphism, since ϕ has the property $\phi(a+b)=a+b=\phi(a)+\phi(b)$.

Exercise. 2

ϕ is not a group homomorphism since $\phi^{-1}(0)=[0,1)$ but $[0,1)$ is not a subgroup of \mathbb{R} under addition.

Exercise. 3

ϕ is a homomorphism since ϕ has the property $\phi(a . b)=|a . b|=|a| \cdot|b|=\phi(a) \phi(b)$.

Exercise. 8

ϕ is not a group homomorphism, since let G be a non-abelian group, and choose $a, b \in G$ such that $a . b \neq b . a$, then $\phi(a . b)=b^{-1} . a^{-1}$, while $\phi(a) \phi(b)=a^{-1} . b^{-1}$, now suppose $b^{-1} \cdot a^{-1}=a^{-1} . b^{-1}$ this implies that $a . b=b . a$ which is not the case. So ϕ is not a homomorphism.

Exercise. 18

We have $\phi: \mathbb{Z} \longrightarrow \mathbb{Z}_{10}$, and $\phi(1)=6$.
Then since any $x \in \mathbb{Z}$ is either $x=1+\ldots+1$ or $x=-1 \ldots-1$ (finite sum of x terms), we can see that $\phi(x)=x \phi(1)=6 x\left(\phi(x)=6 .{ }_{10} x\right)$.

This implies that if $x \in \operatorname{ker} \phi$ we have $6 x=0(\bmod 10)$, now since 6 has order 5 in \mathbb{Z}_{10}, then $\operatorname{ker} \phi=\{x \mid 6 x=0(\bmod 10)\}=5 \mathbb{Z}$.

Finally $\phi(18)=18.106=8$.
Exercise. 22
We have $\phi((1,0))=3$, and $\phi((0,1))=-5$, then $\phi((n, m))=\phi(n(1,0)+m(0,1))=n \phi((1,0))+$ $m \phi((0,1))=3 n-5 m$.

Then suppose $\phi((x, y))=0 \Longrightarrow 3 x-5 y=0$, so $\operatorname{ker} \phi=\{(x, y) \in \mathbb{Z} \times \mathbb{Z} \mid 3 x-5 y=0\}$.
$\phi(-3,2)=-3(3)-5(2)=-19$.
Note that ker ϕ is cyclic, generated by (5,3), Reason : $3 x+5=0 \Longrightarrow 3 x$ is divisible by 5 , $\Longrightarrow x$ is divisible by $5 \Longrightarrow \exists l \in \mathbb{Z}$ such that $x=5 l$, but then $5 y=3 x=15 l$, or $y=3 l$, so $(x, y)=(5 l, 3 l)=l(5,3)$.

Exercise. 47
We already know that $\operatorname{ker} \phi$ is a subgroup of G, but since $|G|$ is prime then the only subgroups of G are 0 , and G, then $\operatorname{ker} \phi$ can either be 0 , or G. If $\operatorname{ker} \phi=0$ then ϕ is injective, and if $\operatorname{ker} \phi=G$ then $\phi=0$.

Exercise. 49
We have $\phi: G \longrightarrow G^{\prime}$, and $\phi^{\prime}: G^{\prime} \longrightarrow G^{\prime \prime}$ are two homomorphisms.

It is easy to see that $\phi^{\prime} o \phi$ is a well defined mapping from G into $G^{\prime \prime}$, so we only need to check the following:

Let $x, y \in G$ we need to prove that $\phi^{\prime} o \phi(x . y)=\phi^{\prime} o \phi(x) \cdot \phi^{\prime} o \phi(y)$.
Start with $\phi^{\prime} o \phi(x . y)=\phi^{\prime}(\phi(x . y))=\phi^{\prime}(\phi(x) \cdot \phi(y))=\phi^{\prime}(\phi(x)) \cdot \phi^{\prime}(\phi(y))=\phi^{\prime} o \phi(x) \cdot \phi^{\prime} o \phi(y)$
This implies that the composite of two homomorphisms is a homomorphism.
Exercise. 53
ϕ is a homomorphism if and only if h , and k commute ($\mathrm{i}, \mathrm{e} \mathrm{hk}=\mathrm{kh}$).
-Let ϕ be a homomorphism , then $\phi((1,1))=\phi((1,0)) \phi((0,1)) h . k$, but $\phi((1,1))=\phi((0,1)) \phi((1,0))=$ $k h$. which implies that $h k=k h$.
-Now suppose we have $h k=k h$, then we need to prove ϕ is a homomorphism, then consider $\phi((a, b)+(c, d))=\phi((a+c, b+d))=h^{a+c} k^{b+d}=h^{a} h^{c} k^{b} k^{d}=h^{a} k^{b} h^{c} k^{d}=\phi((a, b)) \phi((c, d))$. Notice that here we used the fact that $h^{c} . k^{b}=k^{b} . h^{c}$ because h, and k commute, which can be proved by induction on b and c.

Then ϕ is a homomorphism.

