Math 241

Problem Set 6 solution manual

Exercise. A6.1

We will describe $\phi : \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \longrightarrow \mathbb{Z}_2 \times \mathbb{Z}_2$, as a matrix $M = \begin{bmatrix} a & d \\ b & e \\ c & f \end{bmatrix}$. Then $\phi(x, y, z) = (x, y, z)$. $\begin{pmatrix} a & d \\ b & e \\ c & f \end{pmatrix}$. (all calculations being mod 2)

 $\begin{bmatrix} c & f \end{bmatrix}$ Example 1: $H = \langle (1,0,0) \rangle = \{(0,0,0), (1,0,0)\} = \{(x,y,z) \mid y = z = 0\}$ We can take $\phi(x,y,z) = (y,z) = (x,y,z) \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$. So $M_H = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$.

Example 2: $H = \langle (1,0,1) \rangle = \{(0,0,0), (1,0,1)\} = \{(x,y,z) \mid y = 0 \pmod{2} \ x = z\} = \{(x,y,z) \mid y = 0 \pmod{2} \ x + z = 0\}$ We can take $\phi(x,y,z) = (y,x+z) = (x,y,z) \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$. So $M_H = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$.

Example 3: $H = \{(0,0,0), (0,0,1), (1,1,0), (1,1,1)\} = \{(x,y,z) \mid y = x\} = \{(x,y,z) \mid x + y = 0\}$

We can take
$$\phi(x, y, z) = (x + y, 0) = (x, y, z) \begin{bmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 0 \end{bmatrix}$$
. So $M_H = \begin{bmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 0 \end{bmatrix}$

Н	The matrix M_H
<(1,0,0)>	
< (1,1,0) >	$\begin{bmatrix} 1 & 0 \end{bmatrix}$
	1 0
<(1,1,1)>	
< (1,0,1) >	
	0 1
<(0,1,0)>	1 0
	0 0
< (0, 1, 1) >	
<(0,0,1)>	1 0
$\{(0,0,0),(1,0,0),(1,1,0),(0,1,0)\}$	
$\{(0,0,0),(1,0,0),(1,1,1),(0,1,1)\}$	
$\{(0,0,0),(1,0,0),(1,0,1),(0,0,1)\}$	
$\{(0,0,0),(0,1,0),(1,1,1),(1,0,1)\}$	
$\{(0,0,0), (0,1,0), (0,1,1), (0,0,1)\}$	
$\{(0,0,0),(0,0,1),(1,1,0),(1,1,1)\}$	
$\{(0,0,0),(1,1,0),(0,1,1),(1,0,1)\}$	

Section. 11

Exercise. 10

Notice that in $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$, every elements is of order 2. The subgroups of $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ are: $< (1,0,0) >= \{(0,0,0), (1,0,0)\}.$ $< (1,1,0) >= \{(0,0,0), (1,1,0)\}.$ $< (1,0,1) >= \{(0,0,0), (1,1,1)\}.$ $< (0,1,0) >= \{(0,0,0), (0,1,0)\}.$ $< (0,1,1) >= \{(0,0,0), (0,1,1)\}.$ $< (0,0,1) >= \{(0,0,0), (0,0,1)\}.$

Also we have the subgroups of order 4 : $<(1,0,0), (0,1,0) >=<(1,0,0), (1,1,0) >=<(0,1,0), ((1,1,0) >= \{(0,0,0), (1,0,0), (1,1,0), (0,1,0)\}.$ $\{(0,0,0), (1,0,0), (1,1,1), (0,0,1)\}.$ $\{(0,0,0), (0,1,0), (0,1,1), (0,0,1)\}.$ $\{(0,0,0), (0,1,0), (0,1,1), (0,0,1)\}.$ $\{(0,0,0), (0,0,1), (1,1,0), (1,1,1)\}.$ $\{(0,0,0), (1,1,0), (0,1,1), (1,0,1)\}.$

Exercise. 11

The subgroups of order 4 are: We have to cyclic subgroups: $<(0,1)>=\{(0,0),(0,1),(0,2),(0,3)\},\$ $<(1,1)>=\{(0,0),(1,1),(1,2),(0,3)\}.$

And also we have the following subgroup: $\{(0,0), (1,0), (0,2), (1,2)\}$, which is isomorphic to the klein group.

Exercise. 16

We know that : $\mathbb{Z}_{12} \cong \mathbb{Z}_3 \times \mathbb{Z}_4$ Also : $\mathbb{Z}_6 \cong \mathbb{Z}_3 \times \mathbb{Z}_2$ Then : $\mathbb{Z}_2 \times \mathbb{Z}_{12} \cong \mathbb{Z}_2 \times \mathbb{Z}_3 \times \mathbb{Z}_4$. And : $\mathbb{Z}_4 \times \mathbb{Z}_6 \cong \mathbb{Z}_4 \times \mathbb{Z}_3 \times \mathbb{Z}_2$ Then : $\mathbb{Z}_4 \times \mathbb{Z}_6 \cong \mathbb{Z}_2 \times \mathbb{Z}_{12}$.

Exercise. 17

The maximum order of an element is the order of (1,1,1) (check!), which is of order the lcm(8,10,24) = 120.

Exercise. 18

They are not isomorphic since , let $G_1 = \mathbb{Z}_8 \times \mathbb{Z}_{10} \times \mathbb{Z}_{24}$ $G_2 = \mathbb{Z}_4 \times \mathbb{Z}_{12} \times \mathbb{Z}_{40}.$

Notice that :

In \mathbb{Z}_8 we have 4 elements whose order is a divisor of 4 (0,2,4, and 6).

In \mathbb{Z}_{10} we have 2 elements whose order is a divisor of 4 (0, and 5).

In \mathbb{Z}_{24} we have 4 elements whose order is a divisor of 4 (0,6,12, and 18).

So in $\mathbb{Z}_8 \times \mathbb{Z}_{10} \times \mathbb{Z}_{24}$ we have 32 elements whose order is a divisor of 4.

In \mathbb{Z}_4 we have 4 elements whose order is a divisor of 4 (0,1,2, and 3).

In \mathbb{Z}_{12} we have 4 elements whose order is a divisor of 4 (0,3,6 and 9).

In \mathbb{Z}_{40} we have 4 elements whose order is a divisor of 4 (0,10,20, and 30).

So in $\mathbb{Z}_4 \times \mathbb{Z}_{12} \times \mathbb{Z}_{40}$ we have 64 elements whose order is a divisor of 4. Then the two groups G_1 , and G_2 can't be isomorphic.

Exercise. 46

Let us prove it by induction:

base step: for n=2 :Let (G_1, \star) , and (G_2, \star) be two abelian groups, and let us prove that $G_1 \times G_2$ is abelian.

let (a, b), and $(c, d) \in G_1 \times G_2$. Since G_1 and G_2 are abelian we have $a \star b = b \star a$, and $c \star d = d \star c$ then we get $(a, b)(c, d) = (a \star b, c \star d) = (b \star a, d \star c) = (b, d)(a, c)$.

 $\implies G_1 \times G_2$ is abelian.

Inductive step: Suppose it is true up to n, and let us prove it for n + 1.

Let $G_1, ..., G_n, G_{n+1}$ be *n* abelian groups , by the inductive step we have $G_1 \times G_2 \times ... \times G_n$ is abelian , call it *G*, then we have $G_1 \times G_2 \times ... \times G_n \times G_{n+1} = G \times G_{n+1}$, then by the same reasoning in the base step we get that $G_1 \times G_2 \times ... \times G_{n+1}$ is abelian.

Exercise. 47

Given G abelian, and H is equal to the set of all elements of order 2 together with the identity. Let us prove H is a subgroup of G.

- $e \in H$ by definition of H.

- let $a, b \in H$, (WLOG we can consider both a, and b are both not e), we have a is of order 2, and $(ab)^2 = (ab)(ab) = a(ba)b = a(ba)b = (aa)(bb) = e$ then ab is also of order 2, then $ab \in H$.

- Let $a \in H$ then $a^2 = e \implies a \cdot a = e \implies a = a^{-1}$, then $a^{-1} \in H$.

And Hence H is a subgroup of G.

Section. 13

Exercise. 1

 ϕ is a homomorphism, since ϕ has the property $\phi(a+b) = a+b = \phi(a) + \phi(b)$.

Exercise. 2

 ϕ is not a group homomorphism since $\phi^{-1}(0) = [0,1)$ but [0,1) is not a subgroup of \mathbb{R} under addition.

Exercise. 3

 ϕ is a homomorphism since ϕ has the property $\phi(a.b) = |a.b| = |a| \cdot |b| = \phi(a)\phi(b)$.

Exercise. 8

 ϕ is not a group homomorphism, since let G be a non-abelian group , and choose $a, b \in G$ such that $a.b \neq b.a$, then $\phi(a.b) = b^{-1}.a^{-1}$, while $\phi(a)\phi(b) = a^{-1}.b^{-1}$, now suppose $b^{-1}.a^{-1} = a^{-1}.b^{-1}$ this implies that a.b = b.a which is not the case. So ϕ is not a homomorphism.

Exercise. 18

We have $\phi : \mathbb{Z} \longrightarrow \mathbb{Z}_{10}$, and $\phi(1) = 6$.

Then since any $x \in \mathbb{Z}$ is either x = 1 + ... + 1 or x = -1... - 1 (finite sum of x terms), we can see that $\phi(x) = x\phi(1) = 6x$ ($\phi(x) = 6_{.10}x$).

This implies that if $x \in ker\phi$ we have $6x = 0 \pmod{10}$, now since 6 has order 5 in \mathbb{Z}_{10} , then $ker\phi = \{x \mid 6x = 0 \pmod{10}\} = 5\mathbb{Z}$.

Finally $\phi(18) = 18_{.10}6 = 8$.

Exercise. 22

We have $\phi((1,0)) = 3$, and $\phi((0,1)) = -5$, then $\phi((n,m)) = \phi(n(1,0) + m(0,1)) = n\phi((1,0)) + m\phi((0,1)) = 3n - 5m$.

Then suppose $\phi((x, y)) = 0$, $\implies 3x - 5y = 0$, so $ker\phi = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} \mid 3x - 5y = 0\}$. $\phi(-3, 2) = -3(3) - 5(2) = -19$.

Note that $ker\phi$ is cyclic, generated by (5,3), Reason : $3x + 5 = 0 \implies 3x$ is divisible by 5, $\implies x$ is divisible by 5 $\implies \exists l \in \mathbb{Z}$ such that x = 5l, but then 5y = 3x = 15l, or y = 3l, so (x, y) = (5l, 3l) = l(5, 3).

Exercise. 47

We already know that $ker\phi$ is a subgroup of G, but since |G| is prime then the only subgroups of G are 0, and G, then $ker\phi$ can either be 0, or G. If $ker\phi = 0$ then ϕ is injective, and if $ker\phi = G$ then $\phi = 0$.

Exercise. 49

We have $\phi: G \longrightarrow G'$, and $\phi': G' \longrightarrow G''$ are two homomorphisms.

It is easy to see that $\phi' o \phi$ is a well defined mapping from G into G'', so we only need to check the following:

Let $x, y \in G$ we need to prove that $\phi' o\phi(x,y) = \phi' o\phi(x) . \phi' o\phi(y)$. Start with $\phi' o\phi(x,y) = \phi'(\phi(x,y)) = \phi'(\phi(x) . \phi(y)) = \phi'(\phi(x)) . \phi'(\phi(y)) = \phi' o\phi(x) . \phi' o\phi(y)$ This implies that the composite of two homomorphisms is a homomorphism.

Exercise. 53

 ϕ is a homomorphism if and only if h ,and k commute (i,e hk=kh).

-Let ϕ be a homomorphism , then $\phi((1,1)) = \phi((1,0))\phi((0,1))h.k$, but $\phi((1,1)) = \phi((0,1))\phi((1,0)) = kh$. which implies that hk = kh.

-Now suppose we have hk = kh, then we need to prove ϕ is a homomorphism, then consider $\phi((a,b) + (c,d)) = \phi((a+c,b+d)) = h^{a+c}k^{b+d} = h^ah^ck^bk^d = h^ak^bh^ck^d = \phi((a,b))\phi((c,d))$. Notice that here we used the fact that $h^c.k^b = k^b.h^c$ because h, and k commute, which can be proved by induction on b and c.

Then ϕ is a homomorphism.